Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Adv ; 3(2): 482-494, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371916

RESUMO

Nanoporous carbon materials with customized structural features enable sustainable and electrochemical applications through improved performance and efficiency. Carbon spherogels (highly porous carbon aerogel materials consisting of an assembly of hollow carbon nanosphere units with uniform diameters) are desirable candidates as they combine exceptional electrical conductivity, bespoke shell porosity, tunability of the shell thickness, and a high surface area. Herein, we introduce a novel and more environmentally friendly sol-gel synthesis of resorcinol-formaldehyde (RF) templated by polystyrene spheres, forming carbon spherogels in an organic solvent. By tailoring the molar ratio of resorcinol to isopropyl alcohol (R/IPA) and the concentration of polystyrene, the appropriate synthesis conditions were identified to produce carbon spherogels with adjustable wall thicknesses. A single-step solvent exchange process from deionized water to isopropyl alcohol reduces surface tension within the porous gel network, making this approach significantly time and cost-effective. The lower surface tension of IPA enables solvent extraction under ambient conditions, allowing for direct carbonization of RF gels while maintaining a specific surface area loss of less than 20% compared to supercritically dried counterparts. The specific surface areas obtained after physical activation with carbon dioxide are 2300-3600 m2 g-1. Transmission and scanning electron microscopy verify the uniform, hollow carbon sphere network morphology. Specifically, those carbon spherogels are high-performing electrodes for energy storage in a supercapacitor setup featuring a specific capacitance of up to 204 F g-1 at 200 mA g-1 using 1 M potassium hydroxide (KOH) solution as the electrolyte.

2.
Monatsh Chem ; 154(8): 849-856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521146

RESUMO

The spatial organization of metal oxide nanoparticles represents an important factor in the chemical utilization of resulting structures. For the production of networks that are composed of metal oxide nanoparticle chains, we dispersed vapor phase-grown TiO2 and ZnO nanoparticles homogeneously in an aqueous polyvinyl alcohol solution. After electrospinning, we analyzed the sizes and diameters of the compositionally homogeneous electrospun fibers and discussed the size distribution and morphology of the nanoparticles inside. Calcination-induced polymer removal gives rise to self-supported nanoparticle-based nanofibers. Particle coarsening by a factor of ~ 2 for TiO2 and ~ 3 for ZnO nanoparticles is observed.

3.
Nanoscale ; 13(48): 20508-20520, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34854455

RESUMO

A detailed description of the changes that occur during the formation of protein corona represents a fundamental question in nanoscience, given that it not only impacts the behaviour of nanoparticles but also affects the bound proteins. Relevant questions include whether proteins selectively bind particles, whether a specific orientation is preferred for binding, and whether particle binding leads to a modulation of their 3D fold. For allergens, it is important to answer these questions given that all these effects can modify the allergenic response of atopic individuals. These potential impacts on the bound allergen are closely related to the specific properties of the involved nanoparticles. One important property influencing the formation of protein corona is the nanotopography of the particles. Herein, we studied the effect of nanoparticle porosity on allergen binding using mesoporous and non-porous SiO2 NPs. We investigated (i) the selectivity of allergen binding from a mixture such as crude pollen extract, (ii) whether allergen binding results in a preferred orientation, (iii) the influence of binding on the conformation of the allergen, and (iv) how the binding affects the allergenic response. Nanotopography was found to play a major role in the formation of protein corona, impacting the physicochemical and biological properties of the NP-bound allergen. The porosity of the surface of the SiO2 nanoparticles resulted in a higher binding capacity with pronounced selectivity for (preferentially) binding the major birch pollen allergen Bet v 1. Furthermore, the binding of Bet v 1 to the mesoporous rather than the non-porous SiO2 nanoparticles influenced the 3D fold of the protein, resulting in at least partial unfolding. Consequently, this conformational change influenced the allergenic response, as observed by mediator release assays employing the sera of patients and immune effector cells. For an in-depth understanding of the bio-nano interactions, the properties of the particles need to be considered not only regarding the identity and morphology of the material, but also their nanotopography, given that porosity may greatly influence the structure, and hence the biological behaviour of the bound proteins. Thus, thorough structural investigations upon the formation of protein corona are important when considering immunological outcomes, as particle binding can influence the allergenic response elicited by the bound allergen.


Assuntos
Alérgenos , Dióxido de Silício , Antígenos de Plantas , Humanos , Imunoglobulina E , Pólen
4.
Polymers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577958

RESUMO

With increasing demand of alternatives to oil-based lightweight materials, the development of tannin-based foams is getting more and more attention. In this paper, an alternative to traditionally used solvent-evaporation in the production of tannin-foams is presented. Mixing the tannin-furanic resin with different amounts of ionic and non-ionic surfactants at high agitational speed allows for the formation of highly porous, mechanically stable tannin-foams. Investigations on the influence of surfactant type and ingredient ratios on the foaming behavior and properties of the final foams were conducted. Materials obtained via this route do present extraordinary compression resistance (about 0.8 MPa), good thermal insulation (40 mW/m·K) and are suitable as a wastewater treatment agent at the end-of-life. It was shown that during mechanical blowing, homogeneous cross-sections and almost perfectly round pores form, leading to the high compression resistance. Investigations by means of Fourier transform infrared and 13C nuclear magnetic resonance spectroscopy show that the milder reaction environment leads to more linear poly(furfuryl alcohol)-tannin chains. This new type of tannin foam allows for use in various different fields of application ranging from durable building insulation to wastewater treatment.

5.
Chem Commun (Camb) ; 57(32): 3905-3908, 2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33871512

RESUMO

Extraordinarily homogeneous, freestanding titania-loaded carbon spherogels can be obtained using Ti(acac)2(OiPr)2 in the polystyrene sphere templated resorcinol-formaldehyde gelation. Thereby, a distinct, crystalline titania layer is achieved inside every hollow sphere building unit. These hybrid carbon spherogels allow capitalizing on carbon's electrical conductivity and the lithium-ion intercalation capacity of titania.

6.
Chempluschem ; 86(2): 275-283, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33599102

RESUMO

Sol-gel processing combined with soft templating and gelation-induced phase separation is very sensitive to the precursor sol composition. In this work we present a straightforward synthesis towards hierarchically structured, macroporous carbon/titania monoliths with ordered mesopores derived from resorcinol/formaldehyde monoliths and a glycolated titanium precursor. We demonstrate the influence of various reaction solvents, where diol-based media and the proportion of the catalyst seem to be essential in controlling spinodal decomposition, obtaining similar monolithic structures under different synthesis conditions. Based on these observations, we further homogeneously incorporated TiO2 into the carbon structure by an in situ synthesis approach, obtaining structural features similar to pure carbon materials with surface areas of about 400 m2 g-1 , periodically arranged mesopores with a mean distance of 10-11 nm and cellular macroporosity.

7.
Molecules ; 25(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114152

RESUMO

Tannins are eco-friendly, bio-sourced, natural, and highly reactive polyphenols. In the past decades, the understanding of their versatile properties has grown substantially alongside a continuously broadening of the tannins' application scope. In particular, recently, tannins have been increasingly investigated for their interaction with other species in order to obtain tannin-based hybrid systems that feature advanced and/or novel properties. Furthermore, in virtue of the tannins' chemistry and their high reactivity, they either physicochemically or physically interact with a wide variety of different compounds, including metals and ceramics, as well as a number of organic species. Such hybrid or hybrid-like systems allow the preparation of various advanced nanomaterials, featuring improved performances compared to the current ones. Consequently, these diverse-shaped materials have potential use in wastewater treatment or catalysis, as well as in some novel fields such as UV-shielding, functional food packaging, and biomedicine. Since these kinds of tannin-based hybrids represent an emerging field, thus far no comprehensive overview concerning their potential as functional chemical building blocks is available. Hence, this review aims to provide a structured summary of the current state of research regarding tannin-based hybrids, detailed findings on the chemical mechanisms as well as their fields of application.


Assuntos
Taninos/química , Animais , Humanos , Taninos/farmacologia
8.
ACS Appl Mater Interfaces ; 12(42): 47754-47762, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026803

RESUMO

Dynamic materials comprising spiropyrans have emerged as one of the most interesting and promising class of stimulus-responsive materials. Spiropyrans are often embedded in polymer matrices; their covalent attachment into porous monolithic silsesquioxane frameworks, however, is virtually unexplored. We demonstrate that a silylated spiropyran derivative can be covalently incorporated into ultralight silsesquioxane-based bulk materials by a two-step co-condensation sol-gel approach without restricting its conformational freedom and thus its stimulus-responsive properties. UV-vis measurements prove the conversion of the colorless closed-ring form of the spiropyran molecule into its highly colored purple isomer or the yellow colored protonated structure thereof. The transformation can be triggered simply by irradiation of the spiropyran-containing silsesquioxane monolith with UV or visible light or by the pH value of the chemical environment. A strong dependence of the surface polarity and water wettability on the prevalent isomer was observed. The contact angle of a water droplet on the monolithic surface can be altered from 146 to 100° by irradiation of the monolith with UV light for 3 min. Additionally, the prepared materials possess high specific surface areas, low bulk densities, and porosities of up to 84%.

9.
Chem Mater ; 32(9): 3944-3951, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32421084

RESUMO

Anisotropy is a key factor regarding mechanical or transport properties and thus the functionality of porous materials. However, the ability to deliberately design the pore structure of hierarchically organized porous networks toward anisotropic features is limited. Here, we report two straightforward routes toward hierarchically structured porous carbon monoliths with an anisotropic alignment of the microstructure on the level of macro- and mesopores. One approach is based on nanocasting (NC) of carbon precursors into hierarchical and anisotropic silica hard templates. The second route, a direct synthesis approach based on soft templating (ST), makes use of the flexibility of hierarchically structured resorcinol-formaldehyde gels, which are compressed and simultaneously carbonized in the deformed state. We present structural data of both types of carbon monoliths obtained by electron microscopy, nitrogen adsorption analysis, and SAXS measurements. In addition, we demonstrate how the degree of anisotropy can easily be controlled via the ST route.

10.
Phys Chem Chem Phys ; 22(22): 12713-12723, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32462146

RESUMO

In situ small angle scattering is used to study the pore filling mechanism and the adsorption induced deformation of a silica sample with hierarchical porosity upon water adsorption. The high structural order of the cylindrical mesopores on a 2D hexagonal lattice allows obtaining adsorption induced strains from the shift of the corresponding Bragg peaks measured by in situ small-angle X-ray scattering (SAXS). However, apparent strains due to scattering contrast induced changes of the Bragg peak shapes emerge in SAXS. In contrast, small-angle neutron scattering (SANS) allows determining the real adsorption induced strains by employing a H2O/D2O adsorbate with net coherent scattering length density of zero. This allows separating the apparent strains from the real strains experimentally and comparing them with strains obtained from model calculations of the SAXS intensity. It is shown that the apparent strains cannot be described at all by a simple mesopore model of film growth and capillary condensation. A hierarchical model taking the scattering of the micropores and the outer surface of the mesoporous struts in the hierarchically porous sample properly into account, together with a modified mesopore filling mechanism based on a corona model, leads to satisfactory description of both, the adsorption isotherm and the measured apparent strains as derived by SAXS.

11.
Beilstein J Nanotechnol ; 11: 1-15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31976192

RESUMO

Amorphous and graphitized nitrogen-doped (N-doped) carbon spheres are investigated as structurally well-defined model systems to gain a deeper understanding of the relationship between synthesis, structure, and their activity in the oxygen reduction reaction (ORR). N-doped carbon spheres were synthesized by hydrothermal treatment of a glucose solution yielding carbon spheres with sizes of 330 ± 50 nm, followed by nitrogen doping via heat treatment in ammonia atmosphere. The influence of a) varying the nitrogen doping temperature (550-1000 °C) and b) of a catalytic graphitization prior to nitrogen doping on the carbon sphere morphology, structure, elemental composition, N bonding configuration as well as porosity is investigated in detail. For the N-doped carbon spheres, the maximum nitrogen content was found at a doping temperature of 700 °C, with a decrease of the N content for higher temperatures. The overall nitrogen content of the graphitized N-doped carbon spheres is lower than that of the amorphous carbon spheres, however, also the microporosity decreases strongly with graphitization. Comparison with the electrocatalytic behavior in the ORR shows that in addition to the N-doping, the microporosity of the materials is critical for an efficient ORR.

12.
Polymers (Basel) ; 11(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547001

RESUMO

Furfuryl alcohol (FA) and lactic acid (LA) are two of the most interesting biomolecules, easily obtainable from sugars and hence extremely attractive for green chemistry solutions. These substances undergo homopolymerization and they have been rarely considered for copolymerization. Typically, FA homopolymerizes exothermically in an acid environment producing inhomogeneous porous materials, but recent studies have shown that this reaction can be controlled and therefore we have implemented this process to trigger the copolymerization with LA. The mechanical tests have shown that the blend containing small amount of FA were rigid and the fracture showed patterns more similar to the one of neat polyfurfuryl alcohol (PFA). This LA-rich blend exhibited higher chloroform and water resistances, while thermal analyses (TG and DSC) also indicated a higher furanic character than expected. These observations suggested an intimate interconnection between precursors which was highlighted by the presence of a small band in the ester region of the solid state 13C-NMR, even if the FT-IR did not evidence any new signal. These studies show that these bioplastics are basically constituted of PLA and PFA homopolymers with some small portion of covalent bonds between the two moieties.

13.
Langmuir ; 35(35): 11590-11600, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31379170

RESUMO

Adsorption-induced deformation of a series of silica samples with hierarchical porosity has been studied by in situ small-angle neutron scattering (SANS) and in situ dilatometry. Monolithic samples consisted of a disordered macroporous network of struts formed by a 2D lattice of hexagonally ordered cylindrical mesopores and disordered micropores within the mesopore walls. Strain isotherms were obtained at the mesopore level by analyzing the shift of the Bragg reflections from the ordered mesopore lattice in SANS data. Thus, SANS essentially measured the radial strain of the cylindrical mesopores including the volume changes of the mesopore walls due to micropore deformation. A H2O/D2O adsorbate with net zero coherent neutron scattering length density was employed in order to avoid apparent strain effects due to intensity changes during pore filling. In contrast to SANS, the strain isotherms obtained from in situ dilatometry result from a combination of axial and radial mesopore deformation together with micropore deformation. Strain data were quantitatively analyzed with a theoretical model for micro-/mesopore deformation by combining information from nitrogen and water adsorption isotherms to estimate the water-silica interaction. It was shown that in situ SANS provides complementary information to dilatometry and allows for a quantitative estimate of the elastic properties of the mesopore walls from water adsorption.

14.
ACS Appl Mater Interfaces ; 11(19): 17256-17269, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31013056

RESUMO

Due to the synergic feature of individual components in hybrid (nano)biomaterials, their application in regenerative medicine has drawn significant attention. Aiming to address all the current challenges of aerogel as a potent scaffold in bone tissue engineering application, we adopted a novel synthesis approach to synergistically improve the pore size regime and mechanical strength in the aerogel. The three-dimensional aerogel scaffold in this study has been synthesized through a versatile one-pot aqueous-based sol-gel hybridization/assembly of organosilane (tetraethyl orthosilicate) and silk fibroin (SF) biopolymer, followed by unidirectional freeze-casting of the as-prepared hybrid gel and supercritical drying. The developed ultralight silica-SF aerogel hybrids demonstrated a hierarchically organized porous structure with interesting honeycomb-shaped micromorphology and microstructural alignment (anisotropy) in varied length scales. The average macropore size of the hybrid aerogel lied in ∼0.5-18 µm and was systematically controlled with freeze-casting conditions. Together with high porosity (91-94%), high Young's modulus (∼4-7 MPa, >3 order of magnitude improvement compared to their pristine aerogel counterparts), and bone-type anisotropy in the mechanical compressive behavior, the silica-SF hybrid aerogel of this study acted as a very competent scaffold for bone tissue formation. The results of in vitro assessments revealed that the silica-SF aerogel is not only cytocompatible and nonhemolytic but also acted as an open porous microenvironment to trigger osteoblast cell attachment, growth, and proliferation on its surface within 14 days of incubation. Moreover, to support the in vitro results, in vivo bone formation within the aerogel implant in the bone defect site was studied. The X-ray radiology and microcomputed tomography analyses confirmed that a significant new bone tissue density formed in the defect site within 25 days of implantation. Also, in vivo toxicology studies showed a zero-toxic impact of the aerogel implant on the blood biochemical and hematological parameters. Finally, the study clearly shows the potential of aerogel as a bioactive and osteoconductive open porous cellular matrix for a successful osseointegration process.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fibroínas/farmacologia , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Biopolímeros/química , Biopolímeros/farmacologia , Linhagem Celular Tumoral , Fibroínas/química , Humanos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Porosidade , Ratos , Dióxido de Silício/química , Alicerces Teciduais/química , Microtomografia por Raio-X
15.
ChemSusChem ; 11(7): 1179-1186, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29442439

RESUMO

Hierarchically structured titania films, exhibiting interconnected foam-like nanostructures and large-scale channel-type superstructures, were achieved in an energy-saving way at low temperatures by a polymer template-assisted sol-gel synthesis in combination with a wet-imprinting process. The surface morphology was probed with scanning electron microscopy and atomic force microscopy, whereas the inner morphology was characterized with grazing incidence small-angle X-ray scattering measurements. Compared to the initial hybrid films, the titania films showed reduced structure sizes caused by removal of the polymer template. UV/Vis measurements showed an additional light-scattering effect at various angles of light incidence in the hierarchically structured titania films, which resulted in higher light absorption in the wet-imprinted active layer. To give proof of viability, the titania films were evaluated as photoanodes for dye-free hybrid solar cells. The dye-free layout allowed for low-cost fabrication, avoided problems related to dye bleaching, and was a more environmentally friendly alternative to using dyes. Under different angles of light incidence, the enhancement in the short-circuit current density was in good agreement with the improvement in light absorption in the superstructured active layer, demonstrating a positive impact of the superstructures on the photovoltaic performance of hybrid solar cells.

16.
RSC Adv ; 8(48): 27326-27331, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35539967

RESUMO

Mechanically reversible compressible resorcinol-formaldehyde (RF) aerogels can be converted into mechanically reversible compressible carbon aerogels (CA) by carbonization in an inert atmosphere. By incorporation of polystyrene spheres into the RF gels as a sacrificial template, it is possible to create macropores with controlled size within the carbon framework during carbonization. The resulting templated carbon aerogel shows enhanced mechanical flexibility during compression compared to pristine samples. In addition, the presence of hierarchical porosity provides a porous architecture attractive for energy storage applications, such as supercapacitors.

17.
J Mater Chem A Mater ; 6(26): 12598-12612, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30713688

RESUMO

The development of aerogels with improved mechanical properties, to expand their utility in high-performance applications, is still a big challenge. Besides fossil-fuel based polymers that have been extensively utilized as platforms to enhance the mechanical strength of silsesquioxane and silica-based aerogels, using green biopolymers from various sustainable renewable resources are currently drawing significant attention. In this work, we process silk fibroin (SF) proteins, extracted from silkworm cocoons, with organically substituted alkoxysilanes in an entirely aqueous based solution via a successive sol-gel approach, and show for the first time that it is possible to produce homogeneous interpenetrated (IPN) polymethylsilsesquioxane (PMSQ)-SF hybrid aerogel monoliths with significantly improved mechanical properties. Emphasis is given to an improvement of the molecular interaction of the two components (SF biopolymer and PMSQ) using a silane coupling agent and to the design of pore structure. We succeeded in developing a novel class of compressible, light-weight, and hierarchically organized meso-macroporous PMSQ-SF IPN hybrid aerogels by carefully controlling the sol-gel parameters at a molecular level. Typically, these aerogels have a compressive strength (δ max) of up to 14 MPa, together with high flexibility in both compression and bending, compressibility up to 80% strain with very low bulk density (ρ b) of 0.08-0.23 g cm-3. By considering these promising properties, the superhydrophobic/oleophilic PMSQ-SF aerogel hybrids exhibited a high competency for selective absorption of a variety of organic pollutants (absorption capacities ∼500-2600 g g-1 %) from water and acted as a high-performance filter for continuous water/oil separation. Moreover, they have demonstrated impressive thermal insulation performance (λ = 0.032-0.044 W m-1 K-1) with excellent fire retardancy and self-extinguishing capabilities. Therefore, the PMSQ-SF aerogel hybrids would be a new class of open porous material and are expected to further extend the practical applications of this class of porous compounds.

18.
Chem Mater ; 29(18): 7969-7975, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28989232

RESUMO

Structural hierarchy, porosity, and isotropy/anisotropy are highly relevant factors for mechanical properties and thereby the functionality of porous materials. However, even though anisotropic and hierarchically organized, porous materials are well known in nature, such as bone or wood, producing the synthetic counterparts in the laboratory is difficult. We report for the first time a straightforward combination of sol-gel processing and shear-induced alignment to create hierarchical silica monoliths exhibiting anisotropy on the levels of both, meso- and macropores. The resulting material consists of an anisotropic macroporous network of struts comprising 2D hexagonally organized cylindrical mesopores. While the anisotropy of the mesopores is an inherent feature of the pores formed by liquid crystal templating, the anisotropy of the macropores is induced by shearing of the network. Scanning electron microscopy and small-angle X-ray scattering show that the majority of network forming struts is oriented towards the shearing direction; a quantitative analysis of scattering data confirms that roughly 40% of the strut volume exhibits a preferred orientation. The anisotropy of the material's macroporosity is also reflected in its mechanical properties; i.e., the Young's modulus differs by nearly a factor of 2 between the directions of shear application and perpendicular to it. Unexpectedly, the adsorption-induced strain of the material exhibits little to no anisotropy.

19.
J Appl Crystallogr ; 50(Pt 5): 1404-1410, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021735

RESUMO

A new in situ setup combining small-angle neutron scattering (SANS) and dilatometry was used to measure water-adsorption-induced deformation of a monolithic silica sample with hierarchical porosity. The sample exhibits a disordered framework consisting of macropores and struts containing two-dimensional hexagonally ordered cylindrical mesopores. The use of an H2O/D2O water mixture with zero scattering length density as an adsorptive allows a quantitative determination of the pore lattice strain from the shift of the corresponding diffraction peak. This radial strut deformation is compared with the simultaneously measured macroscopic length change of the sample with dilatometry, and differences between the two quantities are discussed on the basis of the deformation mechanisms effective at the different length scales. It is demonstrated that the SANS data also provide a facile way to quantitatively determine the adsorption isotherm of the material by evaluating the incoherent scattering contribution of H2O at large scattering vectors.

20.
J Nanobiotechnology ; 15(1): 55, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732539

RESUMO

BACKGROUND: Activity retention upon enzyme adsorption on inorganic nanostructures depends on different system parameters such as structure and composition of the support, composition of the medium as well as enzyme loading. Qualitative and quantitative characterization work, which aims at an elucidation of the microscopic details governing enzymatic activity, requires well-defined model systems. RESULTS: Vapor phase-grown and thermally processed anatase TiO2 nanoparticle powders were transformed into aqueous particle dispersions and characterized by dynamic light scattering and laser Doppler electrophoresis. Addition of ß-galactosidase (ß-gal) to these dispersions leads to complete enzyme adsorption and the generation of ß-gal/TiO2 heteroaggregates. For low enzyme loadings (~4% of the theoretical monolayer coverage) we observed a dramatic activity loss in enzymatic activity by a factor of 60-100 in comparison to that of the free enzyme in solution. Parallel ATR-IR-spectroscopic characterization of ß-gal/TiO2 heteroaggregates reveals an adsorption-induced decrease of the ß-sheet content and the formation of random structures leading to the deterioration of the active site. CONCLUSIONS: The study underlines that robust qualitative and quantitative statements about enzyme adsorption and activity retention require the use of model systems such as anatase TiO2 nanoparticle agglomerates featuring well-defined structural and compositional properties.


Assuntos
Nanopartículas/química , Titânio/química , beta-Galactosidase/química , Adsorção , Ativação Enzimática , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...